chibi@2204:~/caffe$ cd python; python classify.py --raw_scale 255 ../101_ObjectCategories/panda/image_0002.jpg ../result.npy; cd .. WARNING: Logging before InitGoogleLogging() is written to STDERR I0504 08:44:28.328531 9447 gpu_memory.cpp:82] GPUMemory::Manager initialized CPU mode W0504 08:44:28.485561 9447 _caffe.cpp:172] DEPRECATION WARNING - deprecated use of Python interface W0504 08:44:28.485738 9447 _caffe.cpp:173] Use this instead (with the named "weights" parameter): W0504 08:44:28.485747 9447 _caffe.cpp:175] Net('/home/chibi/caffe/python/../models/bvlc_reference_caffenet/deploy.prototxt', 1, weights='/home/chibi/caffe/python/../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel') I0504 08:44:28.487053 9447 net.cpp:86] Initializing net from parameters: name: "CaffeNet" state { phase: TEST level: 0 } layer { name: "data" type: "Input" top: "data" input_param { shape { dim: 10 dim: 3 dim: 227 dim: 227 } } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" convolution_param { num_output: 96 kernel_size: 11 stride: 4 } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "norm1" type: "LRN" bottom: "pool1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "conv2" type: "Convolution" bottom: "norm1" top: "conv2" convolution_param { num_output: 256 pad: 2 kernel_size: 5 group: 2 } } layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "norm2" type: "LRN" bottom: "pool2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "conv3" type: "Convolution" bottom: "norm2" top: "conv3" convolution_param { num_output: 384 pad: 1 kernel_size: 3 } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" convolution_param { num_output: 384 pad: 1 kernel_size: 3 group: 2 } } layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" convolution_param { num_output: 256 pad: 1 kernel_size: 3 group: 2 } } layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" inner_product_param { num_output: 4096 } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" inner_product_param { num_output: 4096 } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc8" type: "InnerProduct" bottom: "fc7" top: "fc8" inner_product_param { num_output: 1000 } } layer { name: "prob" type: "Softmax" bottom: "fc8" top: "prob" } I0504 08:44:28.487493 9447 net.cpp:116] Using FLOAT as default forward math type I0504 08:44:28.487500 9447 net.cpp:122] Using FLOAT as default backward math type I0504 08:44:28.487505 9447 layer_factory.hpp:172] Creating layer 'data' of type 'Input' I0504 08:44:28.487510 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.487752 9447 net.cpp:205] Created Layer data (0) I0504 08:44:28.487762 9447 net.cpp:547] data -> data I0504 08:44:28.488148 9447 net.cpp:265] Setting up data I0504 08:44:28.488155 9447 net.cpp:272] TEST Top shape for layer 0 'data' 10 3 227 227 (1545870) I0504 08:44:28.488168 9447 layer_factory.hpp:172] Creating layer 'conv1' of type 'Convolution' I0504 08:44:28.488173 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.488375 9447 net.cpp:205] Created Layer conv1 (1) I0504 08:44:28.488382 9447 net.cpp:577] conv1 <- data I0504 08:44:28.488387 9447 net.cpp:547] conv1 -> conv1 I0504 08:44:28.489642 9447 net.cpp:265] Setting up conv1 I0504 08:44:28.489650 9447 net.cpp:272] TEST Top shape for layer 1 'conv1' 10 96 55 55 (2904000) I0504 08:44:28.490064 9447 layer_factory.hpp:172] Creating layer 'relu1' of type 'ReLU' I0504 08:44:28.490072 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.490077 9447 net.cpp:205] Created Layer relu1 (2) I0504 08:44:28.490080 9447 net.cpp:577] relu1 <- conv1 I0504 08:44:28.490084 9447 net.cpp:532] relu1 -> conv1 (in-place) I0504 08:44:28.490095 9447 net.cpp:265] Setting up relu1 I0504 08:44:28.490099 9447 net.cpp:272] TEST Top shape for layer 2 'relu1' 10 96 55 55 (2904000) I0504 08:44:28.490103 9447 layer_factory.hpp:172] Creating layer 'pool1' of type 'Pooling' I0504 08:44:28.490108 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.490113 9447 net.cpp:205] Created Layer pool1 (3) I0504 08:44:28.490118 9447 net.cpp:577] pool1 <- conv1 I0504 08:44:28.490120 9447 net.cpp:547] pool1 -> pool1 I0504 08:44:28.490309 9447 net.cpp:265] Setting up pool1 I0504 08:44:28.490314 9447 net.cpp:272] TEST Top shape for layer 3 'pool1' 10 96 27 27 (699840) I0504 08:44:28.490319 9447 layer_factory.hpp:172] Creating layer 'norm1' of type 'LRN' I0504 08:44:28.490322 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.490334 9447 net.cpp:205] Created Layer norm1 (4) I0504 08:44:28.490338 9447 net.cpp:577] norm1 <- pool1 I0504 08:44:28.490342 9447 net.cpp:547] norm1 -> norm1 I0504 08:44:28.490476 9447 net.cpp:265] Setting up norm1 I0504 08:44:28.490480 9447 net.cpp:272] TEST Top shape for layer 4 'norm1' 10 96 27 27 (699840) I0504 08:44:28.490486 9447 layer_factory.hpp:172] Creating layer 'conv2' of type 'Convolution' I0504 08:44:28.490490 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.490499 9447 net.cpp:205] Created Layer conv2 (5) I0504 08:44:28.490502 9447 net.cpp:577] conv2 <- norm1 I0504 08:44:28.490506 9447 net.cpp:547] conv2 -> conv2 I0504 08:44:28.492834 9447 net.cpp:265] Setting up conv2 I0504 08:44:28.492841 9447 net.cpp:272] TEST Top shape for layer 5 'conv2' 10 256 27 27 (1866240) I0504 08:44:28.492847 9447 layer_factory.hpp:172] Creating layer 'relu2' of type 'ReLU' I0504 08:44:28.492851 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.492856 9447 net.cpp:205] Created Layer relu2 (6) I0504 08:44:28.492859 9447 net.cpp:577] relu2 <- conv2 I0504 08:44:28.492863 9447 net.cpp:532] relu2 -> conv2 (in-place) I0504 08:44:28.492868 9447 net.cpp:265] Setting up relu2 I0504 08:44:28.492871 9447 net.cpp:272] TEST Top shape for layer 6 'relu2' 10 256 27 27 (1866240) I0504 08:44:28.492877 9447 layer_factory.hpp:172] Creating layer 'pool2' of type 'Pooling' I0504 08:44:28.492880 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.492887 9447 net.cpp:205] Created Layer pool2 (7) I0504 08:44:28.492892 9447 net.cpp:577] pool2 <- conv2 I0504 08:44:28.492895 9447 net.cpp:547] pool2 -> pool2 I0504 08:44:28.492900 9447 net.cpp:265] Setting up pool2 I0504 08:44:28.492904 9447 net.cpp:272] TEST Top shape for layer 7 'pool2' 10 256 13 13 (432640) I0504 08:44:28.492909 9447 layer_factory.hpp:172] Creating layer 'norm2' of type 'LRN' I0504 08:44:28.492913 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.492921 9447 net.cpp:205] Created Layer norm2 (8) I0504 08:44:28.492924 9447 net.cpp:577] norm2 <- pool2 I0504 08:44:28.492928 9447 net.cpp:547] norm2 -> norm2 I0504 08:44:28.492946 9447 net.cpp:265] Setting up norm2 I0504 08:44:28.492950 9447 net.cpp:272] TEST Top shape for layer 8 'norm2' 10 256 13 13 (432640) I0504 08:44:28.492959 9447 layer_factory.hpp:172] Creating layer 'conv3' of type 'Convolution' I0504 08:44:28.492962 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.492971 9447 net.cpp:205] Created Layer conv3 (9) I0504 08:44:28.492975 9447 net.cpp:577] conv3 <- norm2 I0504 08:44:28.492978 9447 net.cpp:547] conv3 -> conv3 I0504 08:44:28.499637 9447 net.cpp:265] Setting up conv3 I0504 08:44:28.499643 9447 net.cpp:272] TEST Top shape for layer 9 'conv3' 10 384 13 13 (648960) I0504 08:44:28.499651 9447 layer_factory.hpp:172] Creating layer 'relu3' of type 'ReLU' I0504 08:44:28.499655 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.499660 9447 net.cpp:205] Created Layer relu3 (10) I0504 08:44:28.499665 9447 net.cpp:577] relu3 <- conv3 I0504 08:44:28.499668 9447 net.cpp:532] relu3 -> conv3 (in-place) I0504 08:44:28.499672 9447 net.cpp:265] Setting up relu3 I0504 08:44:28.499676 9447 net.cpp:272] TEST Top shape for layer 10 'relu3' 10 384 13 13 (648960) I0504 08:44:28.499680 9447 layer_factory.hpp:172] Creating layer 'conv4' of type 'Convolution' I0504 08:44:28.499684 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.499693 9447 net.cpp:205] Created Layer conv4 (11) I0504 08:44:28.499697 9447 net.cpp:577] conv4 <- conv3 I0504 08:44:28.499701 9447 net.cpp:547] conv4 -> conv4 I0504 08:44:28.504685 9447 net.cpp:265] Setting up conv4 I0504 08:44:28.504691 9447 net.cpp:272] TEST Top shape for layer 11 'conv4' 10 384 13 13 (648960) I0504 08:44:28.504698 9447 layer_factory.hpp:172] Creating layer 'relu4' of type 'ReLU' I0504 08:44:28.504702 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.504707 9447 net.cpp:205] Created Layer relu4 (12) I0504 08:44:28.504711 9447 net.cpp:577] relu4 <- conv4 I0504 08:44:28.504715 9447 net.cpp:532] relu4 -> conv4 (in-place) I0504 08:44:28.504719 9447 net.cpp:265] Setting up relu4 I0504 08:44:28.504724 9447 net.cpp:272] TEST Top shape for layer 12 'relu4' 10 384 13 13 (648960) I0504 08:44:28.504727 9447 layer_factory.hpp:172] Creating layer 'conv5' of type 'Convolution' I0504 08:44:28.504731 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.504739 9447 net.cpp:205] Created Layer conv5 (13) I0504 08:44:28.504742 9447 net.cpp:577] conv5 <- conv4 I0504 08:44:28.504746 9447 net.cpp:547] conv5 -> conv5 I0504 08:44:28.508108 9447 net.cpp:265] Setting up conv5 I0504 08:44:28.508113 9447 net.cpp:272] TEST Top shape for layer 13 'conv5' 10 256 13 13 (432640) I0504 08:44:28.508121 9447 layer_factory.hpp:172] Creating layer 'relu5' of type 'ReLU' I0504 08:44:28.508124 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.508128 9447 net.cpp:205] Created Layer relu5 (14) I0504 08:44:28.508132 9447 net.cpp:577] relu5 <- conv5 I0504 08:44:28.508136 9447 net.cpp:532] relu5 -> conv5 (in-place) I0504 08:44:28.508140 9447 net.cpp:265] Setting up relu5 I0504 08:44:28.508144 9447 net.cpp:272] TEST Top shape for layer 14 'relu5' 10 256 13 13 (432640) I0504 08:44:28.508148 9447 layer_factory.hpp:172] Creating layer 'pool5' of type 'Pooling' I0504 08:44:28.508152 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.508162 9447 net.cpp:205] Created Layer pool5 (15) I0504 08:44:28.508165 9447 net.cpp:577] pool5 <- conv5 I0504 08:44:28.508169 9447 net.cpp:547] pool5 -> pool5 I0504 08:44:28.508174 9447 net.cpp:265] Setting up pool5 I0504 08:44:28.508178 9447 net.cpp:272] TEST Top shape for layer 15 'pool5' 10 256 6 6 (92160) I0504 08:44:28.508183 9447 layer_factory.hpp:172] Creating layer 'fc6' of type 'InnerProduct' I0504 08:44:28.508186 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.508209 9447 net.cpp:205] Created Layer fc6 (16) I0504 08:44:28.508214 9447 net.cpp:577] fc6 <- pool5 I0504 08:44:28.508217 9447 net.cpp:547] fc6 -> fc6 I0504 08:44:28.800367 9447 net.cpp:265] Setting up fc6 I0504 08:44:28.800379 9447 net.cpp:272] TEST Top shape for layer 16 'fc6' 10 4096 (40960) I0504 08:44:28.800385 9447 layer_factory.hpp:172] Creating layer 'relu6' of type 'ReLU' I0504 08:44:28.800390 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.800395 9447 net.cpp:205] Created Layer relu6 (17) I0504 08:44:28.800400 9447 net.cpp:577] relu6 <- fc6 I0504 08:44:28.800405 9447 net.cpp:532] relu6 -> fc6 (in-place) I0504 08:44:28.800410 9447 net.cpp:265] Setting up relu6 I0504 08:44:28.800413 9447 net.cpp:272] TEST Top shape for layer 17 'relu6' 10 4096 (40960) I0504 08:44:28.800417 9447 layer_factory.hpp:172] Creating layer 'drop6' of type 'Dropout' I0504 08:44:28.800422 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.800431 9447 net.cpp:205] Created Layer drop6 (18) I0504 08:44:28.800434 9447 net.cpp:577] drop6 <- fc6 I0504 08:44:28.800437 9447 net.cpp:532] drop6 -> fc6 (in-place) I0504 08:44:28.800442 9447 net.cpp:265] Setting up drop6 I0504 08:44:28.800446 9447 net.cpp:272] TEST Top shape for layer 18 'drop6' 10 4096 (40960) I0504 08:44:28.800450 9447 layer_factory.hpp:172] Creating layer 'fc7' of type 'InnerProduct' I0504 08:44:28.800454 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.800459 9447 net.cpp:205] Created Layer fc7 (19) I0504 08:44:28.800463 9447 net.cpp:577] fc7 <- fc6 I0504 08:44:28.800467 9447 net.cpp:547] fc7 -> fc7 I0504 08:44:28.928755 9447 net.cpp:265] Setting up fc7 I0504 08:44:28.928762 9447 net.cpp:272] TEST Top shape for layer 19 'fc7' 10 4096 (40960) I0504 08:44:28.928768 9447 layer_factory.hpp:172] Creating layer 'relu7' of type 'ReLU' I0504 08:44:28.928772 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.928777 9447 net.cpp:205] Created Layer relu7 (20) I0504 08:44:28.928781 9447 net.cpp:577] relu7 <- fc7 I0504 08:44:28.928786 9447 net.cpp:532] relu7 -> fc7 (in-place) I0504 08:44:28.928789 9447 net.cpp:265] Setting up relu7 I0504 08:44:28.928792 9447 net.cpp:272] TEST Top shape for layer 20 'relu7' 10 4096 (40960) I0504 08:44:28.928797 9447 layer_factory.hpp:172] Creating layer 'drop7' of type 'Dropout' I0504 08:44:28.928800 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.928807 9447 net.cpp:205] Created Layer drop7 (21) I0504 08:44:28.928812 9447 net.cpp:577] drop7 <- fc7 I0504 08:44:28.928819 9447 net.cpp:532] drop7 -> fc7 (in-place) I0504 08:44:28.928823 9447 net.cpp:265] Setting up drop7 I0504 08:44:28.928826 9447 net.cpp:272] TEST Top shape for layer 21 'drop7' 10 4096 (40960) I0504 08:44:28.928830 9447 layer_factory.hpp:172] Creating layer 'fc8' of type 'InnerProduct' I0504 08:44:28.928834 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.928839 9447 net.cpp:205] Created Layer fc8 (22) I0504 08:44:28.928843 9447 net.cpp:577] fc8 <- fc7 I0504 08:44:28.928848 9447 net.cpp:547] fc8 -> fc8 I0504 08:44:28.959496 9447 net.cpp:265] Setting up fc8 I0504 08:44:28.959502 9447 net.cpp:272] TEST Top shape for layer 22 'fc8' 10 1000 (10000) I0504 08:44:28.959507 9447 layer_factory.hpp:172] Creating layer 'prob' of type 'Softmax' I0504 08:44:28.959511 9447 layer_factory.hpp:184] Layer's types are Ftype:FLOAT Btype:FLOAT Fmath:FLOAT Bmath:FLOAT I0504 08:44:28.959522 9447 net.cpp:205] Created Layer prob (23) I0504 08:44:28.959525 9447 net.cpp:577] prob <- fc8 I0504 08:44:28.959530 9447 net.cpp:547] prob -> prob I0504 08:44:28.959975 9447 net.cpp:265] Setting up prob I0504 08:44:28.959981 9447 net.cpp:272] TEST Top shape for layer 23 'prob' 10 1000 (10000) I0504 08:44:28.960005 9447 net.cpp:343] prob does not need backward computation. I0504 08:44:28.960009 9447 net.cpp:343] fc8 does not need backward computation. I0504 08:44:28.960013 9447 net.cpp:343] drop7 does not need backward computation. I0504 08:44:28.960017 9447 net.cpp:343] relu7 does not need backward computation. I0504 08:44:28.960021 9447 net.cpp:343] fc7 does not need backward computation. I0504 08:44:28.960024 9447 net.cpp:343] drop6 does not need backward computation. I0504 08:44:28.960027 9447 net.cpp:343] relu6 does not need backward computation. I0504 08:44:28.960031 9447 net.cpp:343] fc6 does not need backward computation. I0504 08:44:28.960036 9447 net.cpp:343] pool5 does not need backward computation. I0504 08:44:28.960040 9447 net.cpp:343] relu5 does not need backward computation. I0504 08:44:28.960043 9447 net.cpp:343] conv5 does not need backward computation. I0504 08:44:28.960047 9447 net.cpp:343] relu4 does not need backward computation. I0504 08:44:28.960050 9447 net.cpp:343] conv4 does not need backward computation. I0504 08:44:28.960057 9447 net.cpp:343] relu3 does not need backward computation. I0504 08:44:28.960060 9447 net.cpp:343] conv3 does not need backward computation. I0504 08:44:28.960064 9447 net.cpp:343] norm2 does not need backward computation. I0504 08:44:28.960069 9447 net.cpp:343] pool2 does not need backward computation. I0504 08:44:28.960073 9447 net.cpp:343] relu2 does not need backward computation. I0504 08:44:28.960078 9447 net.cpp:343] conv2 does not need backward computation. I0504 08:44:28.960080 9447 net.cpp:343] norm1 does not need backward computation. I0504 08:44:28.960084 9447 net.cpp:343] pool1 does not need backward computation. I0504 08:44:28.960088 9447 net.cpp:343] relu1 does not need backward computation. I0504 08:44:28.960093 9447 net.cpp:343] conv1 does not need backward computation. I0504 08:44:28.960098 9447 net.cpp:343] data does not need backward computation. I0504 08:44:28.960100 9447 net.cpp:385] This network produces output prob I0504 08:44:28.960116 9447 net.cpp:408] Top memory (TEST) required for data: 68681400 diff: 68681400 I0504 08:44:28.960120 9447 net.cpp:411] Bottom memory (TEST) required for data: 68641400 diff: 68641400 I0504 08:44:28.960124 9447 net.cpp:414] Shared (in-place) memory (TEST) by data: 26658560 diff: 26658560 I0504 08:44:28.960127 9447 net.cpp:417] Parameters memory (TEST) required for data: 243860896 diff: 42272 I0504 08:44:28.960131 9447 net.cpp:420] Parameters shared memory (TEST) by data: 0 diff: 0 I0504 08:44:28.960134 9447 net.cpp:426] Network initialization done. I0504 08:44:29.323297 9447 upgrade_proto.cpp:43] Attempting to upgrade input file specified using deprecated transformation parameters: /home/chibi/caffe/python/../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel I0504 08:44:29.323326 9447 upgrade_proto.cpp:46] Successfully upgraded file specified using deprecated data transformation parameters. W0504 08:44:29.323330 9447 upgrade_proto.cpp:48] Note that future Caffe releases will only support transform_param messages for transformation fields. I0504 08:44:29.323356 9447 upgrade_proto.cpp:52] Attempting to upgrade input file specified using deprecated V1LayerParameter: /home/chibi/caffe/python/../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel I0504 08:44:29.593916 9447 upgrade_proto.cpp:60] Successfully upgraded file specified using deprecated V1LayerParameter I0504 08:44:29.606196 9447 net.cpp:1143] Copying source layer data Type:Data #blobs=0 I0504 08:44:29.606210 9447 net.cpp:1143] Copying source layer conv1 Type:Convolution #blobs=2 I0504 08:44:29.606411 9447 net.cpp:1143] Copying source layer relu1 Type:ReLU #blobs=0 I0504 08:44:29.606416 9447 net.cpp:1143] Copying source layer pool1 Type:Pooling #blobs=0 I0504 08:44:29.606420 9447 net.cpp:1143] Copying source layer norm1 Type:LRN #blobs=0 I0504 08:44:29.606423 9447 net.cpp:1143] Copying source layer conv2 Type:Convolution #blobs=2 I0504 08:44:29.608151 9447 net.cpp:1143] Copying source layer relu2 Type:ReLU #blobs=0 I0504 08:44:29.608160 9447 net.cpp:1143] Copying source layer pool2 Type:Pooling #blobs=0 I0504 08:44:29.608162 9447 net.cpp:1143] Copying source layer norm2 Type:LRN #blobs=0 I0504 08:44:29.608165 9447 net.cpp:1143] Copying source layer conv3 Type:Convolution #blobs=2 I0504 08:44:29.613010 9447 net.cpp:1143] Copying source layer relu3 Type:ReLU #blobs=0 I0504 08:44:29.613018 9447 net.cpp:1143] Copying source layer conv4 Type:Convolution #blobs=2 I0504 08:44:29.616647 9447 net.cpp:1143] Copying source layer relu4 Type:ReLU #blobs=0 I0504 08:44:29.616654 9447 net.cpp:1143] Copying source layer conv5 Type:Convolution #blobs=2 I0504 08:44:29.619096 9447 net.cpp:1143] Copying source layer relu5 Type:ReLU #blobs=0 I0504 08:44:29.619102 9447 net.cpp:1143] Copying source layer pool5 Type:Pooling #blobs=0 I0504 08:44:29.619107 9447 net.cpp:1143] Copying source layer fc6 Type:InnerProduct #blobs=2 I0504 08:44:29.825773 9447 net.cpp:1143] Copying source layer relu6 Type:ReLU #blobs=0 I0504 08:44:29.825783 9447 net.cpp:1143] Copying source layer drop6 Type:Dropout #blobs=0 I0504 08:44:29.825788 9447 net.cpp:1143] Copying source layer fc7 Type:InnerProduct #blobs=2 I0504 08:44:29.917353 9447 net.cpp:1143] Copying source layer relu7 Type:ReLU #blobs=0 I0504 08:44:29.917363 9447 net.cpp:1143] Copying source layer drop7 Type:Dropout #blobs=0 I0504 08:44:29.917367 9447 net.cpp:1143] Copying source layer fc8 Type:InnerProduct #blobs=2 I0504 08:44:29.939811 9447 net.cpp:1135] Ignoring source layer loss (10, 3, 227, 227) Loading file: ../101_ObjectCategories/panda/image_0002.jpg Classifying 1 inputs. Done in 0.24 s. Saving results into ../result.npy chibi@2204:~/caffe$ python show_result.py data/ilsvrc12/synset_words.txt result.npy #1 | n02510455 giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca | 99.9% #2 | n02105641 Old English sheepdog, bobtail | 0.0% #3 | n02104029 kuvasz | 0.0% chibi@2204:~/caffe$